
Apache Distill Documentation
Release 0.1.3

Michelle Beard <msbeard@apache.dot.org>

Jan 19, 2022

CONTENTS

1 User’s Guide 3
1.1 Installation Guide . 3
1.2 Quickstart Guide . 6

2 API Reference 7
2.1 API Documentation . 7

3 Additional Notes 13
3.1 Authors . 13
3.2 Contributing to Apache Distill . 13
3.3 Changelog . 14
3.4 License . 15

4 Indices and tables 17

Python Module Index 19

Index 21

i

ii

Apache Distill Documentation, Release 0.1.3

Apache Distill is part of the SensSoft software stack. It comprises an analytical engine for SensSoft UserALE.js and
SensSoft UserALE.PyQt5 to interact with user activity logs and apply basic analtical operations to the data.

Install instructions can be found here.

A contribution guide has been provided here.

CONTENTS 1

http://sensssoft.incubator.apache.org
https://github.com/apache/incubator-senssoft-user-ale
https://github.com/apache/incubator-senssoft-userale-pyqt5
https://draperlaboratory.github.io/distill/installation.html
https://draperlaboratory.github.io/distill/contributing.html

Apache Distill Documentation, Release 0.1.3

2 CONTENTS

CHAPTER

ONE

USER’S GUIDE

1.1 Installation Guide

1.1.1 Installing Apache Distill

The first step is to install Apache Distill. First, checkout the latest version of Apache Distill.

$ git clone https://git-wip-us.apache.org/repos/asf/incubator-senssoft-distill.git

Apache Distill is a python project, so it can be installed like any other python library. Several operating systems (Mac
OS X, Major Versions of Linux/BSD) have Python pre-installed, so you should just have to run

$ easy_install distill

or

$ pip install distill

Users are strongly recommended to install Apache Distill in a virtualenv. Instructions to setup an virtual environment
will be explained below.

Note: When the package is installed via easy_install or pip this function will be bound to the distill executable
in the Python installation’s bin directory (on Windows - the Scripts directory).

1.1.2 Installing Apache Distill in an Virtual Environment

virtualenv is a tool to create isolated Python environments. virtualenv creates a folder which contains all the necessary
executables to use the packages that the Apache Distill project would need.

Install virtualenv via pip:

$ sudo env/bin/pip install virtualenv

Start by changing directory into the root of Apache Distill’s project directory, and then use the virtualenv command-line
tool to create a new environment:

$ mkdir env
$ virtualenv env

Activate environment:

3

Apache Distill Documentation, Release 0.1.3

$ source env/bin/activate

Install Apache Distill requirements:

$ env/bin/pip install -r requirements.txt

To build the source code and run all unit tests.

$ env/bin/python setup.py develop test

Launch local Apache Distill server, running on localhost:8090:

$ env/bin/dev

Deactivate environment

$ deactivate

1.1.3 Running Apache Distill on Docker Compose

From the project directory, start up Apache Distill in the background.

$ docker-compose up -d
Starting elastic
Starting logstash
Starting kibana
Starting distill
$ docker-compose ps
Name Command State Ports

→˓---------
distill /bin/sh -c python distill/ ... Up 0.0.0.0:8090->8090/tcp
elastic elasticsearch Up 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300-
→˓>9300/tcp
kibana /tmp/entrypoint.sh Up 0.0.0.0:5601->5601/tcp
logstash logstash -f /etc/logstash/ ... Up

To stop services once you’ve finished with them:

$ docker-compose stop

1.1.4 Deployment with Nginx and Gunicorn

I will describe a setup with nginx as a web server on Ubuntu. A web server cannot communicate directly with a Flask
application such as Apache Distill. Thus gunicorn will be used to act as a medium between the web server and Apache
Distill. Gunicorn is like an application web server that will be running behind nginx, and it is WSGI compatible. It can
communicate with applications that support WSGI – Flask, Django, etc.

Install requirements.

$ sudo apt-get update
$ sudo apt-get install -y python python-pip nginx gunicorn

4 Chapter 1. User’s Guide

Apache Distill Documentation, Release 0.1.3

Create a directory to store the project.

$ sudo mkdir /home/pubic_html && cd /home/public_html

Download the project from the GitHub repository and copy the application to the /home/public_html directory.

$ git clone https://git-wip-us.apache.org/repos/asf/incubator-senssoft-distill.git /home/
→˓public_html

Install Apache Distill’s requirements either globally or in a virutal environment:

$ env/bin/pip install -r requirements.txt

Apache Distill has provided an nginx configuration file located in distill/deploy/nginx.conf.

Gunicorn will use port 8000 and handle the incoming HTTP requests.

Restart nginx to load the configuration changes.

$ sudo /etc/init.d/nginx restart

Run gunicorn on port 8000.

$ gunicorn --workers 4 --bind unix:distill.sock -m 007 deploy/run_server:app

Start a new browser instance and navigate to http://localhost.

1.1.5 Installing Documentation

To save yourself the trouble, all up to date documentation is available at https://draperlaboratory.github.io/distill/.

However, if you want to manually build the documentation, the instructions are below.

First, install the documentation dependencies:

$ env/bin/pip install -r doc_requirements.txt

To build Apache Distill’s documentation, create a directory at the root level of /distill called distill-docs.

$ mkdir distill-docs & cd distill-docs

Execute build command:

Inside top-level docs/ directory.
$ make html

This should build the documentation in your shell, and output HTML. At then end, it should say something about
documents being ready in distill-docs/html. You can now open them in your browser by typing

$ open distill-docs/html/index.html

1.1. Installation Guide 5

http://localhost
https://draperlaboratory.github.io/distill/

Apache Distill Documentation, Release 0.1.3

1.2 Quickstart Guide

1.2.1 Usage

Using curl:

$ curl -XGET 'http://localhost:8090/app/register' -d '{
"application_name" : "my_app",
"version" : "0.1",
"application_description" : "my test app"

}'

6 Chapter 1. User’s Guide

CHAPTER

TWO

API REFERENCE

This entire section is mainly for Developers of Apache Distill. This section was automatically generated by Sphinx and
apidoc.

2.1 API Documentation

2.1.1 Apache Distill HTTP Client

RESTful Endpoints

The flask object implements a WSGI application and acts as the central object. It is passed the name of the module
or package of the application. Once it is created it will act as a central registry for the view functions, the URL rules,
template configuration and much more.

The name of the package is used to resolve resources from inside the package or the folder the module is contained in
depending on if the package parameter resolves to an actual python package (a folder with an __init__.py file inside)
or a standard module (just a .py file).

For more information about resource loading, see open_resource().

Usually you create a Flask instance in your main module or in the __init__.py file of your package like this:

from flask import Flask
app = Flask(__name__)

About the First Parameter

The idea of the first parameter is to give Flask an idea what belongs to your application. This name is used to find
resources on the file system, can be used by extensions to improve debugging information and a lot more.

So it’s important what you provide there. If you are using a single module, __name__ is always the correct value. If
you however are using a package, it’s usually recommended to hardcode the name of your package there.

For example if your application is defined in yourapplication/app.py you should create it with one of the two versions
below:

app = Flask('yourapplication')
app = Flask(__name__.split('.')[0])

Why is that? The application will work even with __name__, thanks to how resources are looked up. However it will
make debugging more painful. Certain extensions can make assumptions based on the import name of your application.
For example the Flask-SQLAlchemy extension will look for the code in your application that triggered an SQL query

7

http://www.sphinx-doc.org/en/stable/
http://apidocjs.com/

Apache Distill Documentation, Release 0.1.3

in debug mode. If the import name is not properly set up, that debugging information is lost. (For example it would
only pick up SQL queries in yourapplication.app and not yourapplication.views.frontend)

New in version 0.7: The static_url_path, static_folder, and template_folder parameters were added.

New in version 0.8: The instance_path and instance_relative_config parameters were added.

param import_name the name of the application package

param static_url_path can be used to specify a different path for the static files on the web. Defaults to
the name of the static_folder folder.

param static_folder the folder with static files that should be served at static_url_path. Defaults to the
'static' folder in the root path of the application.

param template_folder the folder that contains the templates that should be used by the application.
Defaults to 'templates' folder in the root path of the application.

param instance_path An alternative instance path for the application. By default the folder 'instance'
next to the package or module is assumed to be the instance path.

param instance_relative_config if set to True relative filenames for loading the config are assumed to be
relative to the instance path instead of the application root.

2.1.2 Apache Distill Analytics

Graph Analytics

class distill.algorithms.graphs.graph.GraphAnalytics
Bases: object

Distill’s graph analytics package. Apply graph algorithms to User Ale log data segmented with Stout.

static foo()

Statistics Package

2.1.3 Apache Distill Models

Brew Interface

class distill.models.brew.Brew
Bases: object

Distill supports basic CRUD operations and publishes the status of an persistenct database. Eventually it will
support ingesting logs sent from an registered application.

static create(app)
Register a new application in Distill

{
"application" : "xdata_v3",
"health" : "green",
"num_docs" : 0,
"status" : "open"

}

8 Chapter 2. API Reference

Apache Distill Documentation, Release 0.1.3

Parameters app – [string] application name (e.g. xdata_v3)

Returns [dict] dictionary of application and its meta information

static delete(app)
Technically closes the index so its content is not searchable.

Parameters app – [string] application name (e.g. xdata_v3)

Returns [dict] status message of the event

static get_applications()
Fetch all the registered applications in Distill.

Note: Private indexes starting with a period are not included in the result set

Returns [dict] dictionary of all registered applications and meta information

static get_status()
Fetch the status of the underlying database instance.

Returns [bool] if connection to database instance has been established

static read(app, app_type=None)
Fetch meta data associated with an application

Example:
{

"application" : "xdata_v3",
"health" : "green",
"num_docs" : "100",
"status" : "open"
"types" : {

"raw_logs" : {
"@timestamp" : "date",
"action" : "string",
"elementId" : "string"

},
"parsed" : {

"@timestamp" : "date",
"elementId_interval" : "string"

},
"graph" : {

"uniqueID" : "string",
"transition_count" : "long",
"p_value" : "float"

}
}

}

Parameters app – [string] application name (e.g. xdata_v3)

Returns [dict] dictionary of application and its meta information

2.1. API Documentation 9

Apache Distill Documentation, Release 0.1.3

static update(app)

Todo: Currently not implemented

Stout Interface

class distill.models.stout.Stout
Bases: object

Main Stout class to support ingest and search operations.

static ingest()
Ingest data coming from Stout to Distill

class distill.models.stout.StoutDoc(meta=None, **kwargs)
Bases: elasticsearch_dsl.document.DocType

Representation of a Stout documentat.

save(*args, **kwargs)
Save data from parsing as a Stout document in Distill

UserAle Interface

class distill.models.userale.UserAle
Bases: object

Main method of entry to perform segmentation and integration of STOUT’s master answer table (if STOUT is
enabled). Advanced and basic analytics is performed in the distill.algorithms.stats and distill.algorithms.graphs
module.

static denoise(app, app_type='parsed', save=False)

static search(app, app_type=None, filters=[], size=100, include='*', scroll=None, sort_field=None)
Perform a search query.

Parameters

• app – [string] application id (e.g. “xdata_v3”)

• app_type – [string] name of the application type. If None all application types are
searched.

• filters – [list of strings] list of filters for a query.

• size – [int] maximum number of hits that should be returned

• sort_field – [string] sorting field. Currently supported fields: “timestamp”, “date”

Returns [dict] dictionary with processed results. If STOUT is enabled, STOUT data will be
merged with final result.

static segment(app, app_type=None, params='')
Just support match all for now.

distill.models.userale.merge_dicts(lst)

distill.models.userale.parse_query_parameters(indx, app_type=None, request_args={})

10 Chapter 2. API Reference

Apache Distill Documentation, Release 0.1.3

2.1.4 Apache Distill Utilities

Query Builder

class distill.utils.query_builder.QueryBuilder(query=None)
Bases: object

add_filters(filters)

add_sorting(sort_field='', sort_order='')

Exception Handling

exception distill.utils.exceptions.Error
Bases: Exception

Base class for exceptions.

exception distill.utils.exceptions.ValidationError(url, msg)
Bases: distill.utils.exceptions.Error

Exceptions raised for errors in validated a url.

Validation Library

distill.utils.validation.str2bool(v)
Convert string expression to boolean

Parameters v – Input value

Returns Converted message as boolean type

Return type bool

distill.utils.validation.validate_request(q)
Parse out request message and validate inputs

Parameters q – Url query string

Raises ValidationError – if the query is missing required parameters

2.1. API Documentation 11

Apache Distill Documentation, Release 0.1.3

12 Chapter 2. API Reference

CHAPTER

THREE

ADDITIONAL NOTES

Design notes, legal information and changelog are here.

3.1 Authors

Apache Distill is written and maintained by Draper and various contributors:

3.1.1 Development Lead

• Michelle Beard <msbeard@apache.org>

3.1.2 Additional Staff

• Laura Mariano <lmariano@apache.org>

• Dr. Joshua Poore <jpoore@apache.org>

• Clay Gimenez <cgimenez@dapache.org>

• Steven York <syork@draper.com>

3.2 Contributing to Apache Distill

Thank you for contributing to the Apache Distill project!

There are certain procedures that must be followed for all contributions. These procedures are necessary to allow us to
allocate resources for reviewing and testing your contribution, as well as to communicate effectively with you during
the review process.

1) Create an issue in JIRA

All changes to Apache Distill must have a corresponding issue in JIRA so the change can be properly
tracked:

https://issues.apache.org/jira/browse/senssoft

If you do not already have an account on JIRA, you will need to create before creating your new issue.

2) Make and test your changes locally

The Apache Distill source is maintained in a git repository hosted on Apache:

13

mailto:msbeard@apache.org
mailto:lmariano@apache.org
mailto:jpoore@apache.org
mailto:cgimenez@dapache.org
mailto:syork@draper.com
https://issues.apache.org/jira/browse/senssoft

Apache Distill Documentation, Release 0.1.3

https://git-wip-us.apache.org/repos/asf/incubator-senssoft-distill.git

To make your changes, fork the repository and make commits to a topic branch in your fork. Commits
should be made in logical units and must reference the JIRA issue number:

$ git commit -m "#SENSSOFT-123: #High-level message describing the changes."

Avoid commits which cover multiple, distinct goals that could (and should) be handled separately.

If you do not already have an account on JIRA, you will need to create one before making your changes.

3) Submit your changes via a pull request on Git

Once your changes are ready, submit them by creating a pull request for the corresponding topic
branch you created when you began working on your changes.

The Apache Distill team will then review your changes and, if they pass review, your changes will be
merged.

3.3 Changelog

3.3.1 0.1.3 (2016-09-19)

• Moved to Apache.

• Updated all documentation.

• Added License headers

• Docker compose file added to assist deployment of ELK stack with Distill

3.3.2 0.1.2 (2016-07-22)

• Moved CRUD operations from UserAle model to Brew model.

• Added API specs to segment UserAle data from Elasticsearch

• Added deployment instructions

3.3.3 0.1.1 (2016-06-14)

• Completed index route for status endpoint which lists all applications registered and their document count seg-
mented by type.

• Updated setup.py to reference deploy scripts

• Example configuration to deploy Distll with Gunicorn and Nginx for Linux/Mac users

• Added UserAle and Stout classes.

• Updated requirements.txt for deployment.

14 Chapter 3. Additional Notes

https://git-wip-us.apache.org/repos/asf/incubator-senssoft-distill.git

Apache Distill Documentation, Release 0.1.3

3.3.4 0.1.0 (2016-04-01)

Initial release.

3.4 License

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NO-
TICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this
file to You under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

3.4. License 15

http://www.apache.org/licenses/LICENSE-2.0

Apache Distill Documentation, Release 0.1.3

16 Chapter 3. Additional Notes

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

17

Apache Distill Documentation, Release 0.1.3

18 Chapter 4. Indices and tables

PYTHON MODULE INDEX

d
distill.algorithms.graphs.graph, 8
distill.app, 7
distill.models.brew, 8
distill.models.stout, 10
distill.models.userale, 10
distill.utils.exceptions, 11
distill.utils.query_builder, 11
distill.utils.validation, 11

19

Apache Distill Documentation, Release 0.1.3

20 Python Module Index

INDEX

A
add_filters() (distill.utils.query_builder.QueryBuilder

method), 11
add_sorting() (distill.utils.query_builder.QueryBuilder

method), 11

B
Brew (class in distill.models.brew), 8

C
create() (distill.models.brew.Brew static method), 8

D
delete() (distill.models.brew.Brew static method), 9
denoise() (distill.models.userale.UserAle static

method), 10
distill.algorithms.graphs.graph
module, 8

distill.app
module, 7

distill.models.brew
module, 8

distill.models.stout
module, 10

distill.models.userale
module, 10

distill.utils.exceptions
module, 11

distill.utils.query_builder
module, 11

distill.utils.validation
module, 11

E
Error, 11

F
foo() (distill.algorithms.graphs.graph.GraphAnalytics

static method), 8

G
get_applications() (distill.models.brew.Brew static

method), 9
get_status() (distill.models.brew.Brew static method),

9
GraphAnalytics (class in dis-

till.algorithms.graphs.graph), 8

I
ingest() (distill.models.stout.Stout static method), 10

M
merge_dicts() (in module distill.models.userale), 10
module
distill.algorithms.graphs.graph, 8
distill.app, 7
distill.models.brew, 8
distill.models.stout, 10
distill.models.userale, 10
distill.utils.exceptions, 11
distill.utils.query_builder, 11
distill.utils.validation, 11

P
parse_query_parameters() (in module dis-

till.models.userale), 10

Q
QueryBuilder (class in distill.utils.query_builder), 11

R
read() (distill.models.brew.Brew static method), 9

S
save() (distill.models.stout.StoutDoc method), 10
search() (distill.models.userale.UserAle static method),

10
segment() (distill.models.userale.UserAle static

method), 10
Stout (class in distill.models.stout), 10
StoutDoc (class in distill.models.stout), 10

21

Apache Distill Documentation, Release 0.1.3

str2bool() (in module distill.utils.validation), 11

U
update() (distill.models.brew.Brew static method), 9
UserAle (class in distill.models.userale), 10

V
validate_request() (in module dis-

till.utils.validation), 11
ValidationError, 11

22 Index

	User’s Guide
	Installation Guide
	Installing Apache Distill
	Installing Apache Distill in an Virtual Environment
	Running Apache Distill on Docker Compose
	Deployment with Nginx and Gunicorn
	Installing Documentation

	Quickstart Guide
	Usage

	API Reference
	API Documentation
	Apache Distill HTTP Client
	RESTful Endpoints

	Apache Distill Analytics
	Graph Analytics
	Statistics Package

	Apache Distill Models
	Brew Interface
	Stout Interface
	UserAle Interface

	Apache Distill Utilities
	Query Builder
	Exception Handling
	Validation Library

	Additional Notes
	Authors
	Development Lead
	Additional Staff

	Contributing to Apache Distill
	Changelog
	0.1.3 (2016-09-19)
	0.1.2 (2016-07-22)
	0.1.1 (2016-06-14)
	0.1.0 (2016-04-01)

	License

	Indices and tables
	Python Module Index
	Index

